Training-Dependent Associative Learning Induced Neocortical Structural Plasticity: A Trace Eyeblink Conditioning Analysis

نویسندگان

  • Lily S. Chau
  • Alesia V. Prakapenka
  • Liridon Zendeli
  • Ashley S. Davis
  • Roberto Galvez
چکیده

Studies utilizing general learning and memory tasks have suggested the importance of neocortical structural plasticity for memory consolidation. However, these learning tasks typically result in learning of multiple different tasks over several days of training, making it difficult to determine the synaptic time course mediating each learning event. The current study used trace-eyeblink conditioning to determine the time course for neocortical spine modification during learning. With eyeblink conditioning, subjects are presented with a neutral, conditioned stimulus (CS) paired with a salient, unconditioned stimulus (US) to elicit an unconditioned response (UR). With multiple CS-US pairings, subjects learn to associate the CS with the US and exhibit a conditioned response (CR) when presented with the CS. Trace conditioning is when there is a stimulus free interval between the CS and the US. Utilizing trace-eyeblink conditioning with whisker stimulation as the CS (whisker-trace-eyeblink: WTEB), previous findings have shown that primary somatosensory (barrel) cortex is required for both acquisition and retention of the trace-association. Additionally, prior findings demonstrated that WTEB acquisition results in an expansion of the cytochrome oxidase whisker representation and synaptic modification in layer IV of barrel cortex. To further explore these findings and determine the time course for neocortical learning-induced spine modification, the present study utilized WTEB conditioning to examine Golgi-Cox stained neurons in layer IV of barrel cortex. Findings from this study demonstrated a training-dependent spine proliferation in layer IV of barrel cortex during trace associative learning. Furthermore, findings from this study showing that filopodia-like spines exhibited a similar pattern to the overall spine density further suggests that reorganization of synaptic contacts set the foundation for learning-induced neocortical modifications through the different neocortical layers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trace eyeblink conditioning requires the hippocampus but not autophosphorylation of alphaCaMKII in mice.

Little is known about signaling mechanisms underlying temporal associative learning. Here, we show that mice with a targeted point mutation that prevents autophosphorylation of alphaCaMKII (alphaCaMKII(T286A)) learn trace eyeblink conditioning normally. This forms a sharp contrast to the severely impaired spatial learning in the water maze and contextual fear conditioning observed in alphaCaMKI...

متن کامل

Vibrissa-signaled eyeblink conditioning induces somatosensory cortical plasticity.

Whisker deflection conditioned stimuli (CS) were demonstrated to activate physiologically and anatomically defined barrels in the contralateral somatosensory cortex and to support trace-eyeblink conditioned responses when paired with corneal airpuff unconditioned stimuli in rabbits. Analysis of cytochrome-oxidase-stained somatosensory whisker-associated cortical barrels revealed a row-specific ...

متن کامل

Perirhinal and postrhinal, but not lateral entorhinal, cortices are essential for acquisition of trace eyeblink conditioning.

The acquisition of temporal associative tasks such as trace eyeblink conditioning is hippocampus-dependent, while consolidated performance is not. The parahippocampal region mediates much of the input and output of the hippocampus, and perirhinal (PER) and entorhinal (EC) cortices support persistent spiking, a possible mediator of temporal bridging between stimuli. Here we show that lesions of ...

متن کامل

PKMζ Inhibition Reverses Learning-Induced Increases in Hippocampal Synaptic Strength and Memory during Trace Eyeblink Conditioning

A leading candidate in the process of memory formation is hippocampal long-term potentiation (LTP), a persistent enhancement in synaptic strength evoked by the repetitive activation of excitatory synapses, either by experimental high-frequency stimulation (HFS) or, as recently shown, during actual learning. But are the molecular mechanisms for maintaining synaptic potentiation induced by HFS an...

متن کامل

Hippocampal ripple-contingent training accelerates trace eyeblink conditioning and retards extinction in rabbits.

There are at least two distinct oscillatory states of the hippocampus that are related to distinct behavioral patterns. Theta (4-12 Hz) oscillation has been suggested to indicate selective attention during which the animal concentrates on some features of the environment while suppressing reactivity to others. In contrast, sharp-wave ripples ( approximately 200 Hz) can be seen in a state in whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014